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ABSTRACT 

This Report considers the problem of error probability- estimation 
in systems involving a threshold detector. The estimation procedure 
which merely observes the occurrence of errors is too slow, whereas 
the procedure which attempts to find a theoretical distribution for 
amplitude deviations and then predicts error probabilities from the 
tails of this distribution is too unreliable. Extreme-value theory, a 
procedure in use in fields such as flood control, monitors not only the 
occurrence of errors but also how close the detection scheme comes 
to making errors even when no error is made. Thus, the maximum 
amplitude deviation in a large number of bits is recorded as a new 
datum. The distribution of these extreme data then has an extreme- 
value distribution. The parameters of the extreme-value distribution 
are estimated, and this in turn yields an estimate of the error proba- 
bility. There is a saving of a factor of ten in test time over mere bit error 
testing. The distributions obtained from actual threshold systems 
are shown to fit the theoretical distribution very well. The method 
was used to test the command receivers in Rangers VZZ, VZZZ, and ZX. 

1. INTRODUCTION 

In the applications expounded in this paper, it is not proposed to delve into 
the sources of noise or errors in communication systems or into any of the 
associated philosophical arguments. Sutfice it to say that man cannot at present 
physically manufacture the components assumed to exist during theoretical 
system analyses. If, in an attempt to make theory and practice agree, he modifies 
his models of these devices to more accurately represent components he can 
manufacture, the analysis becomes so cumbersome that he cannot generally pre- 
dict precisely the behavior of the resulting model. This is one of the basic reasons 
to test systems or parts of systems; other reasons may be to prove capability of 
designs apart from the theoretical predictions, to check for degradation of per- 
formance with time, etc. For these applications, it is assumed that the need to 
test a portion of a communication system-especially the receiver-has been 
established. Furthermore, the receiver type is assumed to be restricted to those 
used in binary communication systems, and the examples discussed are slanted 
toward space communications. 
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I I .  BIT ERROR TESTING 

INCOMING 

’IGN& SIGNAL 
PROCESS1 NG - In nearly all binary communication systems, informa- 

tion is ultimately conveyed by the use of some form of 
a decision or threshold device. At this point it becomes 
convenient to restrict the topic to systems whose receiver 
is basically a threshold detection device. This may take 
the very simple form of a telegraph receiver responding 
(Le., the arm closing) if sufficient current passes through 
the coil, and the converse (non-response) if sufficient 
current is lacking. Here the receiver acts as its own 
threshold device and is simplicity itself among receivers. 
Threshold receivers, in general, are all basically “signal 
present” receivers, whether it be the presence of a cer- 
tain amount of current, as in the above example, or the 
presence of a particular frequency, phase, amplitude, 
etc. They are widely used in communication-for ex- 
ample in telegraphy, remote control, and frequently in 
command and telemetry systems aboard both deep space 
probes and orbital spacecraft. In this type of system the 
question of reliability of received information eventually 
can be and frequently is reduced to the concept of a bit 
error, i.e., the probability of incorrect reception on a 
particular bit (binary one or zero). Thus, given a binary 
one (zero) and noise as the incoming signal of a threshold 
type receiver (Fig. l), the basic question becomes “What 
is the probability of failing to receive a binary one (zero) 
at the output?” 

One of the more obvious attacks on this problem is 
the standard concept of bit error testing (Fig. 2 ) .  In this 
approach, the receiver under test is supplied with a given 
signal-to-noise ratio (SNR), a known bit is transmitted 
to it, and the output is examined and compared with the 
type of bit transmitted. The error rate is defined simply 
as the ratio of bits in error to total bits transmitted during 
the test. If either error rates or bit rates are high so that 
errors accumulate at the rate of 10 to 20 per hour of test 
time, this approach can give accurate results with high 
confidence levels in a “reasonable” length of time. How- 
ever, if error rates are low (say and bit rates are also 
relatively low (say 1 bit/sec), then the test time required 
to establish such an error rate experimentally is about 
45 hr to obtain an 80% confidence level. And as bit 
rates decrease, and/or error rates being measured de- 
crease, the required test time increases. 

In present-day deep space probes, bit rates used in 
communication with the spacecraft are normally low 

OUTPUT THRESHOLD --c ----co 
DEVICE 

2 

d 
TIMING 

*THE FUNCTJON OF THE “BUFFER” AS USED HERE IS 
TO EXAMINE THE OUTPUT OF THE THRESHOLD DEVICE 
AS DICTATED BY THE TIMING SIGNAL AND TO 
TRANSLATE THE INFORMATION DETERMINED BY THE 
THRESHOLD DEVICE AS REQUIRED BY NEEDED 
OUT PUT CHARACTER1 ST I CS. 

Fig. 1. Threshold receiver 

UNIT UNDER TEST 

I 
I I I 

Fig. 2. Bit error testing 

(1 bit/sec, for example, on both Ranger and Mariner 
command systems). Too, reliability of transmitted com- 
mands must be high. The defined threshold on these 
two systems is a bit error rate of Test time required 
to establish whether or not the required error rates are 
obtained at the specified SNR is on the order of several 
hours, as previously mentioned. If it is further desired 
to not only obtain this one point of data, but also to 
establish an actual experimental curve of bit error rates 
as a function of SNR (perhaps at several temperatures), 
test time can become prohibitive. Furthermore, long 
periods of testing allow variables, some known and 
some unknown, to influence the system under test. This, 
in turn, leads to highly instrumented test complexes 
involving large amounts of equipment, manpower, and 
operating time. A different approach would obviously 
be welcome. 
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111. EXTREME-VALUE THEORY 

Refer again to Fig. 1. It is not uncommon for informa- 
tion to be presented to the threshold device in analog 
fashion. There is much information available in the 
analog signal that is not used in bit error testing as 
previously described. Thus, one can determine not only 
whether an error occurred or not, but also how close it 
came to occurring. This implies that knowledge of the 
amplitude distribution of the information presented to 
the threshold device at the time the threshold detector’s 
output is examined will allow prediction of the proba- 
bility that any one bit will be in error (Fig. 3). However, 
conventional measurements of amplitude distribution 
again present problems in test time unless the shape of 
the distribution is used to extrapolate beyond observed 
data. If the shape of the distribution under test is known, 
this approach would hold some promise. Although theory 
will again predict the shape of these curves for some 
systems, the theory generally disagrees with physical 
measurements at the extremes of the distribution-pre- 
cisely where it becomes of most value in problems of 
this type. Thus, ideas of curve fitting by standard dis- 
tributions (i.e., Rayleigh, Gaussian, etc.) are not as 
powerful as is needed. It is in defining and extrapolating 
this “tail” of a possibly unknown amplitude distribution 
function that the use of extreme value statistics becomes 
of aid. 

First, we shall summarize extreme-value theory, taking 
much of the results from Gumbel (Ref. 1). The extreme- 
value d is t r ibu t ion  re fer red  to  is of the  form 
exp{ - exp[ - a ( x  - u) ]  }, where a, u are positive param- 
eters. This distribution is the asymptotic distribution for 
large n of the extreme positive value among n inde- 
pendent random variables x i  chosen from a “nice” distri- 
bution. One is willing to assume that the unknown 

.SHADED AREA 
REPRESENTS 
THE PROBABILITY 
OF A BIT ERROR 

I 

THRESHOLD DEVICE 
TRIGGER POINT 

Fig. 3. Probability density of signal to threshold device 

distribution of voltage fluctuation is of tl.e “nice” type, 
since this assumption is satisfied for distributions having 
right-hand tails qualitatively like a normal or negative 
exponential distribution. 

The way extreme-value theory is used in estimating 
error probabilities is as follows: Consider a threshold 
detection system as discussed. Assume the bit rate is 
slow enough so that deviations in different bits. are 
independent random variables, as is true in the Ranger 
command detector. Examine a run of hl = Nn succes- 
sive bits, with for example a one as the transmitted 
symbol. Look at the maximum of the (negative of) this 
deviation in each block of n bits. If n is large enough, 
these maximum deviations will approximately have the 
extreme-value distribution with unknown parameters a, 
u. Then estimate a, u from the N samples of the dis- 
tribution of the maxima. 

Using a and u, then estimate the error probability 
from “the probability of exceeding the fixed threshold in 
an extreme-value distribution with parameters a and u,” 
for we can estimate the probability that the maximum 
out of n exceeds the threshold. Simple algebra trans- 
forms this probability into the probability that a given one 
observation exceeds the threshold; for small error prob- 
abilities, division by n accomplishes this. We thus obtain 
an estimate of the probability of the error ‘‘l+O,” given 
that a one was sent. In practice, we typically use A4 = 3000, 
n = 100, N = 30. That is, extremes were taken from suc- 
cessive groups of 100 samples, giving 30 independent 
samples from, hopefully, an extreme-value distribution. 

A so-called “goodness-of-fit” test was applied to typical 
Ranger data (Fig. 4; the difference P:,is a certain statistic 
used in the test). The result was an exceptionally good 
fit-so encouraging that it was decided to use the method 
on succeeding Rangers that were flown. 

The parameters a and u, and so the error probability, 
were estimated using Gumbel’s technique. Confidence 
intervals of probability 35 were similarly obtained, and 
are shown on the figures. 

It is interesting to ask what the increase in the number 
of samples taken would have to be to obtain comparably 
good estimates by the bit error testing method. The 
improvement is rather dramatic at error probabilities of 

3 
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RECORD OF 
DIGITIZED 
SIGNAL 

X w )  

Fig. 4. Goodness-of-fit 

ANA LOG -TO- 

CONVERTER 
a DIG I TAL 

lo-' or less, but even at 
factor of 10 in test time can be demonstrated. 

savings on the order of a 

This opportunity should be taken to remark that 
extreme-value theory is not new in engineering. It has 
previously been applied in such areas as dam building 
(Ref. 1). What is done is to study the maximum flood on 
a river over a period of years, and use extreme-value 
theory to find the height of dam necessary to hold back 
all floods in the next, say, 50 years with high probability. 
Applications here are really different, however. What is 
done is study the floods (maximum amplitudes) and see 
how close they come to overflowing the dam (threshold). 
If this overflow (error) probability is too high, another 
river (detector) is used. 

IV. EXPERIMENTAL RESULTS 

Rangers Vll,  Vlll,  IX, and type approval command 
detectors were tested, but only data on the type approval 
unit will be presented here. 

Measurements were made using a Beckman 4040B 
digital-to-analog converter and an associated printer on 
the Ranger command detector output (Fig. 5) at a num- 
ber of different signal-to-noise ratios on the detector 
input. A processed form of the data obtained is given in 
Table 1; the same data is plotted in Fig. 6. Final results 
(i.e., estimated bit error rates) are presented in Table 2 
along with results of bit error tests on the same system. 

In evaluating Table 1, it should be pointed out that 
the signal-to-noise ratios indicated are accurate only to 
about t 2  db with a relative accuracy of approximately 
t0.5 db. The major source of inaccuracy is the fact that 
an RF loop (modulator, transmitter, and transponder 
receiver) was used in the test with all the attendant prob- 

4 

lems that such a loop poses. It might be interesting to 
note that the error rate near 25-db SNR had long been 
suspected, mostly on intuitive grounds, of being lo-? to 
IO-*, but had not previously been measured. 

I R L I N G E R  COMMANDDETECTOR 
I - I  

INPUT + I_____ 

Fig. 5. Test setup 
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0ii error mles 

Lower limit Nominal Upper limit 
Method usedD 

Number 

per group 

Signal-lo- 
noise mtio 
db in 1 c p  

20.6 

21.1 
22.8 

23.0 
25.0 

25.1 

G.oUP 
number 

Exireme-value - 2.7 X 10- - 
*wry 

1.03 X lo-’ 1.26 X lo-’ 1.41 X lo-’ Bit errw test 
1.85 X lo-’ 2.6 X 10- 3.45 X 10- Extreme-value 

theory 

2.4 X 10-4 4.24 X lo-‘ 6.9 X lo-‘. Bit error test 

4. X 1.6 X 5. X 10- Extreme-value 

theory 
No errors in 230, 269 bits. Bit error test 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

~ ~~ 

Table 1. Ordered voltages Table 2. Results of tests 

100 

- m  (noise) 

Old& 

-0.036 
0.01 0 
0.01 6 
0.01 9 
0.030 
0.049 
0.058 
0.065 
0.08 1 
0.1 07 
0.1 16 
0.1 29 
0.1 29 
0.1 39 
0.1 49 
0.1 49 
0.1 55 
0.172 
0.175 
0.181 
0.1 94 
0.200 
0.207 
0.214 
0.220 
0.256 
0.259 
0.272 
0.334 
0.61 8 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

105 

At 20.6 db 

ordered 
vottoge 

- 0.54 1 
-0.496 
-0.332 
-0.268 
-0.235 

0.1 42 
0.1 52 
0.1 64 
0.1 64 
0.171 
0.194 
0.197 
0.203 
0.206 
0.206 
0.21 2 
0.252 
0.268 
0.284 
0.306 
0.3 1 2 
0.322 
0.326 
0.358 
0.361 
0.378 
0.419 
0.422 
0.432 
0.438 
0.442 
0.458 
0.468 
0.487 
0.491 
0.497 
0.51 3 
0.526 
0.532 
0.532 
0.535 
0.538 
0.542 
0.545 
0.558 
0.564 
0.586 
0.586 
0.694 

105 

At 22.8 db 

orderad 
vottoge 

0.304 
0.308 
0.407 
0.465 
0.586 
0.708 
0.73 1 
0.772 
0.798 
0.820 
0.827 
0.830 
0.859 
0.872 
0.881 
0.965 
0.965 
0.994 
1.026 
1.033 
1.035 
1.096 
1.1 02 
1.1  06 
1.1 12 
1.112 
1.135 
1.244 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

100 

At 25 db 

ordered 
v o h w  

1.587 
1.555 
1.552 
1.548 
1.535 
1.532 
1.523 
1.516 
1.513 
1.510 
1.51 0 
1.497 
1.481 
1.474 
1.471 
1 A71 
1.471 
1.468 
1.465 
1 A65 
1.432 
1.432 
1 A29 
1.426 
1.397 
1.377 
1.374 
1.352 
1.345 
1.258 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

An additional application of the theory of extreme 
values to Ranger has been to the “start time” of the 
command detector. The Ranger command system is an 
asynchronous frequency-shift-keyed system. As such, 
it relies for program start on the known, or at least 
repeatable, delay in the detector between the initial 
application of a bit and the response at the detector 
output. This delay is typically on the order of 80 msec, 
but  will vary as a function of signal strength. Of 
course, at a given signal-to-noise ratio, the delay will 
vary because of noise. If this variation is sufficient, caus- 
ing the detector to start its program late enough, it could 
result in the second bit being interpreted as the first one, 
the third as the second one, etc. Hence, the start time 
and its variation become very much of interest. 

Measurements of the start time have been made on 
the Ranger Block I11 type approval detector at various 
signal-to-noise ratios. Only two of these test results will 
be presented here; they are summarized in Table 3 and 
plotted in Fig. 7. I t  is indicated in Fig. 7 that, at 21-db 
SNR, there is a probability of (1.51 Ti:;:) X le4 of sam- 
pling the wrong bit throughout the received word; this 
probability has never previously been measured or even 
estimated. Note that, as might be expected, this is well 
below the 25-db SNR threshold that is used in practice. 

A certain hesitation may be experienced by many engi- 
neers when extrapolation over large values of the variate 
is required to obtain the desired goal, as in Fig. 6(d). 
Whether or not such extreme extrapolation is justified is 
not known; this application of the technique is new and 
most certainly not fully explored. The final answer must 
await further testing. Nonetheless, in mitigation, it is felt 
that the results so obtained do appear reasonable. 

5 
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Fig. 6. Ranger command detector curves 
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Fig. 6. Ranger command detector curves 
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Fig. 7. Start time curves 
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Table 3. Application to start time 

S i g n o h  
noise mtio 
[db in 1 cps) 

'rwp numbec 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

1 1  
12 
13 
14 
15 

16 
17 
18 
19 
20 

At 21 

Shwi time, muu 

234.67 
245.29 
254.06 
282.85 
287.80 

292.77 
305.27 
307.17 
307.82 
308.37 

31 8.39 
320.29 
3 27.79 
328.47 
332.1 8 

339.66 
343.46 
366.54 
429.91 
442.80 

Note: All sroups hod 105 samples. 

At 27 

Stact time, msec 

92.86 
93.42 
93.93 
97.82 
97.84 

98.44 
99.01 
99.72 
99.74 

100.95 

102.19 
102.21 
102.86 
102.87 
103.40 

105.31 
107.18 
109.73 
1 14.08 
1 18.46 
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